Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37882658

RESUMO

The prokaryotic generic name Pseudospirillum Satomi et al. 2002 is illegitimate because it is a later homonym of Pseudospirillum Alexeieff 1917, a genus of uncertain affiliation, possibly belonging to the Mesomycetozoa (Principle 2 and Rule 51b(5) of the International Code of Nomenclature of Prokaryotes). We therefore propose the replacement generic name Allopseudospirillum, with type species Allopseudospirillum japonicum.


Assuntos
Ácidos Graxos , Oceanospirillaceae , Filogenia , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-37185048

RESUMO

A Gram-stain-negative, strictly aerobic, rod-shaped and motile bacterium with bipolar flagella, designated G-43T, was isolated from a surface seawater sample collected from an aquaculture in Guangxi, PR China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain G-43T was most closely related to the family Oceanospirillaceae and distantly to the most closely related genera Venatorbacter and Thalassolituus (95.52 % and 94.45-94.76 % 16S rRNA gene sequence similarity, respectively), while similarity values to other Oceanospirillaceae type strains were lower than 94.0 %. Strain G-43T was found to grow at 4-30 °C (optimum, 25-28 °C), pH 6-9.0 (optimum, pH 7.0) and with 0-4.0 % NaCl (w/v; optimum at 2 % NaCl). Chemotaxonomic analysis of strain G-43T indicated that the sole respiratory quinone was ubiquinone-8, the predominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), and the major polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, aminolipid, diphosphatidylglycerol, phospholipids and an unidentified lipid. The G+C content of the genomic DNA was 55.4 mol%. The phylogenetic, genotypic, phenotypic and chemotaxonomic data demonstrate that strain G-43T represents a novel species in a novel genus within the family Oceanospirillaceae, for which the name Parathalassolituus penaei gen. nov., sp. nov. is proposed. Strain G-43T (=KCTC 72750T= CCTCC AB 2022321T) is the type and only strain of Parathalassolituus penaei.


Assuntos
Oceanospirillaceae , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio/análise , Lagoas , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , China , Composição de Bases , Análise de Sequência de DNA , Fosfolipídeos/química
3.
Appl Environ Microbiol ; 89(4): e0189622, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36975807

RESUMO

The marine bacterial family Oceanospirillaceae, is well-known for its ability to degrade hydrocarbons and for its close association with algal blooms. However, only a few Oceanospirillaceae-infecting phages have been reported thus far. Here, we report on a novel Oceanospirillum phage, namely, vB_OsaM_PD0307, which has a 44,421 bp linear dsDNA genome and is the first myovirus infecting Oceanospirillaceae. A genomic analysis demonstrated that vB_OsaM_PD0307 is a variant of current phage isolates from the NCBI data set but that it has similar genomic features to two high-quality, uncultured viral genomes identified from marine metagenomes. Hence, we propose that vB_OsaM_PD0307 can be classified as the type phage of a new genus, designated Oceanospimyovirus. Additionally, metagenomic read mapping results have further shown that Oceanospimyovirus species are widespread in the global ocean, display distinct biogeographic distributions, and are abundant in polar regions. In summary, our findings expand the current understanding of the genomic characteristics, phylogenetic diversity, and distribution of Oceanospimyovirus phages. IMPORTANCE Oceanospirillum phage vB_OsaM_PD0307 is the first myovirus found to infect Oceanospirillaceae, and it represents a novel abundant viral genus in polar regions. This study provides insights into the genomic, phylogenetic, and ecological characteristics of the new viral genus, namely Oceanospimyovirus.


Assuntos
Bacteriófagos , Oceanospirillaceae , Filogenia , Clima Frio , Genômica , Genoma Viral
4.
PLoS One ; 17(8): e0271174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35947547

RESUMO

A Gram-staining-negative, aerobic bacterium, designated strain PT3T was isolated from laboratory-reared larvae of the Japanese sea cucumber Apostichopus japonicus. Phylogenetic analysis based on the 16S rRNA gene nucleotide sequences revealed that PT3T was closely related to Amphritea ceti RA1T (= KCTC 42154T = NBRC 110551T) and Amphritea spongicola MEBiC05461T (= KCCM 42943T = JCM 16668T) both with 98.3% sequence similarity, however, average nucleotide identity (ANI) and in silico DNA-DNA hybridization (in silico DDH) values among these three strains were below 95% and 70%, respectively, confirming the novelty of PT3T. Furthermore, the average amino acid identity (AAI) values of PT3T against other Amphritea species were on the reported genus delineation boundary (64-67%). Multilocus sequence analysis using four protein-coding genes (recA, mreB, rpoA, and topA) further demonstrated that PT3T, Amphritea ceti and Amphritea spongicola formed a monophyletic clade clearly separate from other members of the genus Amphritea. Three strains (PT3T, A. ceti KCTC 42154T and A. spongicola JCM 16668T) also showed higher similarities in their core genomes compared to those of the other Amphritea spp. Based on the genome-based taxonomic approach, Aliamphritea gen. nov. was proposed together with the reclassification of the genus Amphritea and Aliamphritea ceti comb. nov. (type strain RA1T = KCTC 42154T = NBRC 110551T), Aliamphritea spongicola comb. nov. (type strain MEBiC05461T = KCCM 42943T = JCM 16668T), and Aliamphritea hakodatensis sp. nov. (type strain PT3T = JCM 34607T = KCTC 82591T) were suggested.


Assuntos
Ácidos Graxos , Genômica , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Oceanospirillaceae , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Curr Microbiol ; 79(4): 124, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258703

RESUMO

A novel Gram-negative, motile, aerobic, spiral-shaped bacterium designated D5T, was isolated from a coastal sediment collected in the Yellow Sea. Optimal growth occurred at 30 °C, pH 7.0-8.0 and in the presence of 1-3% (w/v) NaCl. Strain D5T contained ubiquinone 8 (Q-8) as the predominant respiratory quinone. The major fatty acids (> 10%) were C16:0, C16:1 ω7c/C16:1 ω6c and C18:1w7c/C18:1w6c. The main polar lipids were phosphatidylglycerol and phosphatidylethanolamine. The draft genome is 5.6 Mb in length, and DNA G + C content is 47.2 mol%. 16S rRNA gene sequences showed that strain D5T is most closely related to Oceanospirillum beijerinckii NBRC 15445T (97.8%, sequence similarity). However, the digital DNA-DNA hybridization (dDDH) value and average nucleotide identity (ANI) between strain D5T and O. beijerinckii is only 27.8% and 77.1%. Phylogenetic trees based on 16S rRNA gene sequences and whole genomes all indicated that strain D5T formed a separate branch in the genus Oceanospirillum. Combined results of the polyphasic analyses suggested that strain D5T represents a novel species in the genus Oceanospirillum, for which the name Oceanospirillum sediminis sp. nov. is proposed. The type strain is D5T (= MCCC 1K06061T = KCTC 62987T).


Assuntos
Sedimentos Geológicos , Oceanospirillaceae , Filogenia , Água do Mar , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/química , Sedimentos Geológicos/microbiologia , Oceanospirillaceae/classificação , Oceanospirillaceae/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Ubiquinona/química
6.
Int J Biol Macromol ; 195: 255-263, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34914906

RESUMO

Several species of novel marine bacteria from the genus Marinobacterium, including M. nitratireducens, M. sediminicola, and M. zhoushanense were found to be capable of producing polyhydroxyalkanoates (PHA) using sugars and volatile fatty acids (VFAs) as the carbon source. M. zhoushanense produced poly-3-hydroxybutytate (PHB) from sucrose, achieving a product titer and PHB content of 2.89 g/L and 64.05 wt%, respectively. By contrast, M. nitratireducens accumulated 3.38 g/L PHB and 66.80 wt% polymer content using butyrate as the substrate. A third species, M. sediminicola showed favorable tolerance to propionate, butyrate, and valerate. The use of 10 g/L valerate yielded 3.37 g/L poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), with a 3-hydroxyvalerate (3 HV) monomer content of 94.75 mol%. Moreover, M. sediminicola could be manipulated to produce PHBV with changeable polymer compositions by feeding different mixtures of VFAs. Our results indicate that M. sediminicola is a promising halophilic bacterium for the production of PHA.


Assuntos
Ácido 3-Hidroxibutírico/biossíntese , Oceanospirillaceae/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Ácido 3-Hidroxibutírico/metabolismo , Butiratos , Carbono , Ácidos Graxos Voláteis/metabolismo , Hidroxibutiratos , Poliésteres/química , Poli-Hidroxialcanoatos/metabolismo , Propionatos , Açúcares/metabolismo , Valeratos
7.
Sci Rep ; 11(1): 21393, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725408

RESUMO

A novel Gram-stain negative, aerobic, halotolerant, motile, rod-shaped, predatory bacterium ASxL5T, was isolated from a bovine slurry tank in Nottinghamshire, UK using Campylobacter hyointestinalis as prey. Other Campylobacter species and members of the Enterobacteriaceae were subsequently found to serve as prey. Weak axenic growth on Brain Heart Infusion agar was achieved upon subculture without host cells. The optimal growth conditions were 37 °C, at pH 7. Transmission electron microscopy revealed some highly unusual morphological characteristics related to prey availability. Phylogenetic analyses using 16S rRNA gene sequences showed that the isolate was related to members of the Oceanospirillaceae family but could not be classified clearly as a member of any known genus. Whole genome sequencing of ASxL5T confirmed the relationship to members the Oceanospirillaceae. Database searches revealed that several ASxL5T share 16S rRNA gene sequences with several uncultured bacteria from marine, and terrestrial surface and subsurface water. We propose that strain ASxL5T represents a novel species in a new genus. We propose the name Venatorbacter cucullus gen. nov., sp. nov. with ASxL5T as the type strain.


Assuntos
Antibiose , Bovinos/microbiologia , Oceanospirillaceae/genética , Oceanospirillaceae/fisiologia , RNA Ribossômico 16S/genética , Animais , Genoma Bacteriano , Oceanospirillaceae/ultraestrutura , Filogenia , Resíduos/análise
8.
Environ Pollut ; 288: 117673, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34218080

RESUMO

Mobile genetic elements (MGEs) such as plasmids or integrative conjugative elements (ICEs) are widely involved in the horizontal transfer of antibiotic resistant genes (ARGs), but their environmental host-range and reservoirs remain poorly known, as mainly assessed through the analysis of culturable and clinical bacterial isolates. In this study, we used a gradual approach for determining the environmental abundance and host-range of ICEs belonging to the SXT/R391 family, otherwise well known to bring ARGs in Vibrio spp. epidemic clones and other pathogens. First, by screening a set of aquatic bacteria libraries covering 1794 strains, we found that almost 1% of the isolates hosted an SXT/R391 element, all belonging to a narrow group of non-O1/non-O139 Vibrio cholerae. However, when SXT/R391 ICEs were then quantified in various aquatic communities, they appeared to be ubiquitous and relatively abundant, from 10-6 to 10-3 ICE copies per 16 S rDNA. Finally, the molecular exploration of the SXT/R391 host-range in two river ecosystems impacted by anthropogenic activities, using the single-cell genomic approach epicPCR, revealed several new SXT/R391 hosts mostly in the Proteobacteria phylum. Some, such as the pathogen Arcobacter cryaerophilus (Campylobacteraceae), have only been encountered in discharged treated wastewaters and downstream river waters, thus revealing a likely anthropogenic origin. Others, such as the non-pathogenic bacterium Neptunomonas acidivorans (Oceanospirillaceae), were solely identified in rivers waters upstream and downstream the treated wastewaters discharge points and may intrinsically belong to the SXT/R391 environmental reservoir. This work points out that not only the ICEs of the SXT/R391 family are more abundant in the environment than anticipated, but also that a variety of unsuspected hosts may well represent a missing link in the environmental dissemination of MGEs from and to bacteria of anthropogenic origin.


Assuntos
Conjugação Genética , Especificidade de Hospedeiro , Arcobacter , Ecossistema , Oceanospirillaceae
9.
Artigo em Inglês | MEDLINE | ID: mdl-34323676

RESUMO

A Gram-stain-negative, non-motile, facultatively anaerobic, short rod-shaped bacterium, designated HB171799T, was isolated from seacoast sandy soil collected at Qishui Bay, Hainan, PR China. The chemotaxonomic analysis revealed that the respiratory quinones were Q-8 and Q-7, and the major cellular fatty acids were summed feature 8 (comprising C18 : 1 ω7c and/or C18 : 1 ω6c), C16 : 0 and C18 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified phospholipid and an unidentified lipid. The size of the draft genome was 3.68 Mb with a DNA G+C content of 48.0 mol%. Results of phylogenetic analyses based on 16S rRNA gene and genome sequences showed that the novel isolate belonged to the family Oceanospirillaceae and formed a distinct subcluster at the base of the radiation of the genus Marinomonas. The highest sequence similarity (96.0 %) of the novel isolate was found to the type strains of Marinomonas fungiae JCM 18476T and Marinomonas ostreistagni DSM23425T. The whole genome-based phylogeny and differences in cellular fatty acids and polar lipids readily distinguished strain HB171799T from all the closely related validly published type strains. Strain HB171799T is therefore suggested to represent a novel species of a new genus in the family Oceanospirillaceae, for which the name Maribrevibacterium harenarium gen. nov., sp. nov. is proposed. The type strain is HB171799T (=CGMCC 1.16727T=JCM 33332T).


Assuntos
Oceanospirillaceae , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Marinomonas , Oceanospirillaceae/genética , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Antonie Van Leeuwenhoek ; 114(7): 1117-1130, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34059969

RESUMO

A novel Gram-staining-negative, rod-shaped, 0.6-0.8 µm wide and 2.0-3.0 µm in length, motile bacterium designated strain AK62T, was isolated from the green algal mat collected from saltpan, Kakinada, Andhra Pradesh, India. Colonies on ZMA were circular, off-white, shiny, moist, translucent, 1-2 mm in diameter, flat, with an entire margin. The major fatty acids include C16:0, C18:1 ω7c, and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c and/or iso-C14:0 3-OH). Polar lipids include diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminophospholipid, three unidentified phospholipids, and one unidentified lipid. Polyamine includes Spermidine. The DNA G + C content of the strain AK62T was 58.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain AK62T was closely related to the type strains Marinobacterium sediminicola, Marinobacterium coralli and Marinobacterium stanieri with a pair-wise sequence similarity of 96.9, 96.6 and 96.6%, respectively, forming a distinct branch within the genus Marinobacterium and clustered with M. stanieri, M. sediminicola, M. coralli and M. maritimum cluster. Strain AK62T shares average nucleotide identity (ANIb, based on BLAST) of 78.44, 76.69, and 76.95% with M. sediminicola CGMCC 1.7287T, M. stanieri DSM 7027T, and Marinobacterium halophilum Mano11T respectively. Based on the observed phenotypic, chemotaxonomic characteristics, and phylogenetic analysis, strain AK62T is described in this study as a novel species in the genus Marinobacterium, for which the name Marinobacterium alkalitolerans sp. nov. is proposed. The type strain of M. alkalitolerans is AK62T (= MTCC 12102T = JCM 31159T = KCTC 52667T).


Assuntos
Oceanospirillaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Índia , Nitrato Redutase , Oceanospirillaceae/isolamento & purificação , Fosfolipídeos/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona , Urease
11.
Mar Genomics ; 53: 100754, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32883436

RESUMO

The marine bacterium Neptunomonas concharum was firstly characterized in 2012. It preferred to utilize acetate as the carbon source to accumulate poly-3-hydroxybutyrate (PHB) as intracellular carbon and energy storage. Here we report the genomic characteristics of N. concharum JCM17730T. The complete genome sequence of N. concharum JCM17730T consists of 3,561,992 bp in one contig, without plasmid. Analysis of coding sequences revealed the presence of genomic features involved in acetate assimilation and PHB metabolism. The genome of N. concharum JCM17730T contains three genes encoding acetyl-CoA synthetase and two genes encoding isocitrate lyase. Three polyhydroxyalkanoate synthases and one polyhydroxyalkanoate depolymerase are scattered throughout the genomic DNA. The genome features provide interesting insights into the acetate and PHB metabolism of N. concharum JCM17730T and would facilitate further research on the genetic engineering of marine bacteria for efficient PHB production.


Assuntos
Arcidae/microbiologia , Genoma Bacteriano , Oceanospirillaceae/genética , Acetatos/metabolismo , Animais , República da Coreia , Sequenciamento Completo do Genoma
12.
Curr Microbiol ; 77(11): 3414-3421, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32740715

RESUMO

The peculiar biotechnological applications of Oleispira spp. in the natural cleansing of oil-polluted marine systems stimulated the study of the phenotypic characteristics of the Oleispira antarctica RB-8(T) strain and modifications of these characteristics in relation to different growth conditions. Bacterial abundance, cell size and morphology variations (by image analysis) and hydrocarbon degradation (by gas chromatography with flame ionization detection, GC-FID) were analysed in different cultures of O. antarctica RB-8(T). The effects of six different hydrocarbon mixtures (diesel, engine oil, naval oil waste, bilge water, jet fuel and oil) used as a single carbon source combined with two different growth temperatures (4° and 15 °C) were analysed (for 22 days). The data obtained showed that the mean cell volume decreased with increasing experimental temperature. Three morphological bacterial shapes were identified: spirals, rods and cocci. Morphological transition from spiral to rod and coccoid shapes in relation to the different substrates (oil mixtures) and/or growth temperatures was observed, except for one experimental condition (naval oil waste) in which spiral bacteria were mostly dominant. Phenotypic traits and physiological status of hydrocarbon-degrading bacteria showed important modifications in relation to culture conditions. These findings suggest interesting potential for strain RB-8(T) for ecological and applicative purposes.


Assuntos
Oceanospirillaceae , Bactérias/genética , Biodegradação Ambiental , Variação Biológica da População
13.
Int J Syst Evol Microbiol ; 70(9): 4897-4902, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32735211

RESUMO

A novel bacterium, designated strain KXZD1103T, was isolated from sediment collected at a cold seep field of the Formosa Ridge in the South China Sea. Cells were Gram-stain-negative, facultatively anaerobic, motile, oxidase- and catalase-positive, and grew optimally at 28 °C, pH 6.0-pH 7.0 and in the presence of 1-3 % (w/v) NaCl. The major cellular fatty acids were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c), summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c) and C16 : 0. The major respiratory ubiquinone was Q-8. The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Analysis of 16S rRNA gene sequences revealed that strain KXZD1103T grouped with members of the genus Nitrincola, with Nitrincola lacisaponensis 4CAT (98.1 % sequence similarity) and Nitrincola schmidtii R4-8T (97.7 %) as its closest neighbours. Genome sequencing revealed a genome size of 4.17 Mb and a DNA G+C content of 50.1 %. Genomic average nucleotide identity values for strain KXZD1103T with the type strains within the genus Nitrincola ranged from 71.0 to 75.7 %, while the in silico DNA-DNA hybridization values for strain KXZD1103T with these strains ranged from 16.1 to 21.6 %. On the basis of the results of phylogenetic, phenotypic and chemotaxonomic analyses, strain KXZD1103T is considered to represent a novel species of the genus Nitrincola, for which the name Nitrincola iocasae sp. nov. is proposed. The type strain is KXZD1103T (=KCTC 72678T=MCCC 1K04283T).


Assuntos
Sedimentos Geológicos/microbiologia , Oceanospirillaceae/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Oceanospirillaceae/isolamento & purificação , Oceano Pacífico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
14.
J Biotechnol ; 319: 69-73, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32526261

RESUMO

Neptunomonas concharum JCM17730 was isolated from an ark clam sample and characterized as a mesophilic bacterium. The genome of N. concharum JCM17730 contains thirteen genes related to polyhydroxyalkanoates (PHA) metabolism. Three PHA synthase encoding genes were identified, and phylogenetic analysis of enzyme sequences suggested the presence of two class I PHA synthases and one class III PHA synthase. The PHA synthases of N. concharum were heterologously expressed with acetyl-CoA acetyltransferase and acetoacetyl-CoA reductase in Escherichia coli to confirm the catalytic activity of each PHA synthase. Recombinants harboring different PHA synthase exhibit important distinctions in poly-3-hydroxybutyrate synthesis ability under various temperatures. Decreased cultivation temperature (≤30 °C) significantly improved PHB titer and content. This is the first report on characterization of PHA synthases from the marine genus Neptunomonas and would provide molecular basis for PHA production using Neptunomonas species.


Assuntos
Aciltransferases , Proteínas de Bactérias , Oceanospirillaceae , Aciltransferases/química , Aciltransferases/genética , Aciltransferases/metabolismo , Organismos Aquáticos/enzimologia , Organismos Aquáticos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Oceanospirillaceae/enzimologia , Oceanospirillaceae/genética , Poli-Hidroxialcanoatos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Sci Rep ; 10(1): 6662, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313127

RESUMO

The environment affects the composition and function of soil microbiome, which indirectly influences the quality of plants. In this study, 16S amplicon sequencing was used to reveal the differences in soil microbial community composition of Cistanche deserticola in three ecotypes (saline-alkali land, grassland and sandy land). Through the correlation analysis of microbial community abundance, phenylethanoid glycoside contents and ecological factors, the regulatory relationship between microbial community and the quality variation of C. deserticola was expounded. The metabolic function profile of soil microbiome was predicted using Tax4Fun. Data showed that the soil microbial communities of the three ecotypes were significantly different (AMOVA, P < 0.001), and the alpha diversity of grassland soil microbial community was the highest. Core microbiome analysis demonstrated that the soil microbial communities of C. deserticola were mostly have drought, salt tolerance, alkali resistance and stress resistance, such as Micrococcales and Bacillales. The biomarkers, namely, Oceanospirillales (saline-alkali land), Sphingomonadales (grassland) and Propionibacteriales (sandy land), which can distinguish three ecotype microbial communities, were excavated through LEfSe and random forest. Correlation analysis results demonstrated that 2'-acetylacteoside is positively correlated with Oceanospirillales in saline-alkali land soil. The metabolic function profiles displayed highly enriched metabolism (carbohydrate and amino acid metabolisms) and environmental information processing (membrane transport and signal transduction) pathways. Overall, the composition and function of soil microbiomes were found to be important factors to the quality variation of C. deserticola in different ecotypes. This work provided new insight into the regulatory relationship amongst the environment, soil microbial community and plant quality variation.


Assuntos
Bacillales/classificação , Cistanche/microbiologia , Micrococcaceae/classificação , Oceanospirillaceae/classificação , Propionibacteriaceae/classificação , Microbiologia do Solo , Sphingomonadaceae/classificação , Bacillales/genética , Bacillales/isolamento & purificação , Técnicas de Tipagem Bacteriana , China , Cistanche/fisiologia , Secas , Ecótipo , Variação Genética , Glicosídeos/biossíntese , Pradaria , Concentração de Íons de Hidrogênio , Micrococcaceae/genética , Micrococcaceae/isolamento & purificação , Oceanospirillaceae/genética , Oceanospirillaceae/isolamento & purificação , Filogenia , Propionibacteriaceae/genética , Propionibacteriaceae/isolamento & purificação , RNA Ribossômico 16S/genética , Salinidade , Tolerância ao Sal/genética , Areia/microbiologia , Solo/química , Sphingomonadaceae/genética , Sphingomonadaceae/isolamento & purificação
16.
Environ Microbiol ; 22(5): 1870-1883, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32090431

RESUMO

In cold marine environments, the obligate hydrocarbon-degrading psychrophile Oleispira antarctica RB-8, which utilizes aliphatic alkanes almost exclusively as substrates, dominates microbial communities following oil spills. In this study, LC-MS/MS shotgun proteomics was used to identify changes in the proteome induced during growth on n-alkanes and in cold temperatures. Specifically, proteins with significantly higher relative abundance during growth on tetradecane (n-C14 ) at 16°C and 4°C have been quantified. During growth on n-C14 , O. antarctica expressed a complete pathway for the terminal oxidation of n-alkanes including two alkane monooxygenases, two alcohol dehydrogenases, two aldehyde dehydrogenases, a fatty-acid-CoA ligase, a fatty acid desaturase and associated oxidoreductases. Increased biosynthesis of these proteins ranged from 3- to 21-fold compared with growth on a non-hydrocarbon control. This study also highlights mechanisms O. antarctica may utilize to provide it with ecological competitiveness at low temperatures. This was evidenced by an increase in spectral counts for proteins involved in flagella structure/output to overcome higher viscosity, flagella rotation to accumulate cells and proline metabolism to counteract oxidative stress, during growth at 4°C compared with 16°C. Such species-specific understanding of the physiology during hydrocarbon degradation can be important for parameterizing models that predict the fate of marine oil spills.


Assuntos
Alcanos/metabolismo , Biodegradação Ambiental , Oceanospirillaceae/metabolismo , Poluição por Petróleo , Cromatografia Líquida , Temperatura Baixa , Citocromo P-450 CYP4A/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos/metabolismo , Oceanospirillaceae/genética , Oceanospirillaceae/crescimento & desenvolvimento , Oxirredução , Oxirredutases/genética , Filogenia , Proteômica , Água do Mar/microbiologia , Espectrometria de Massas em Tandem
17.
Int J Syst Evol Microbiol ; 70(1): 576-581, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31613746

RESUMO

Strain F3212T, Gram-stain-negative, aerobic, helical and motile bacterium, was isolated from the marine sediment collected in a sea cucumber culture pond located in Rongcheng, China. Strain F3212T grew optimally at pH 8.5, at 30 °C and in the presence of 3.0 % (w/v) NaCl. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain F3212T belongs to the genus Marinospirillum, clustering with M. celere, M. alkaliphilum, M. minutulum, M. megaterium and M. insulare (with 96.4, 94.6, 93.1, 92.4 and 92.1 % 16S rRNA gene sequence similarities, respectively). The chemotaxonomic properties of strain F3212T were similar to those of members of the genus Marinospirillum. Q-8 was the sole respiratory ubiquinone and the genomic DNA G+C content was 53.3 mol%. The major fatty acids were C18 : 1 ω9c, C16 : 0 and C18 : 0. The polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentifed lipid and an unidentified aminophospholipid. The average nucleotide identity scores for strains M. celere DSM 18438T and M. minutulum DSM 6287T were 74.5 and 69.4 %, respectively. The DNA-DNA homologies with M. celere DSM 18438T and M. minutulum DSM 6287T were less than 20 %. It's concluded that strain F3212T represents a new species of the genus Marinospirillum, for which the name Marinospirillum perlucidum sp. nov. is proposed. The type strain is F3212T (=KCTC 52892T=MCCC 1H00198T).


Assuntos
Sedimentos Geológicos/microbiologia , Oceanospirillaceae/classificação , Filogenia , Lagoas/microbiologia , Pepinos-do-Mar/microbiologia , Animais , Aquicultura , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Oceanospirillaceae/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Ubiquinona/química
18.
Proc Natl Acad Sci U S A ; 117(1): 346-354, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871208

RESUMO

Tryptophan synthase (TS) is a heterotetrameric αßßα complex. It is characterized by the channeling of the reaction intermediate indole and the mutual activation of the α-subunit TrpA and the ß-subunit TrpB via a complex allosteric network. We have analyzed this allosteric network by means of ancestral sequence reconstruction (ASR), which is an in silico method to resurrect extinct ancestors of modern proteins. Previously, the sequences of TrpA and TrpB from the last bacterial common ancestor (LBCA) have been computed by means of ASR and characterized. LBCA-TS is similar to modern TS by forming a αßßα complex with indole channeling taking place. However, LBCA-TrpA allosterically decreases the activity of LBCA-TrpB, whereas, for example, the modern ncTrpA from Neptuniibacter caesariensis allosterically increases the activity of ncTrpB. To identify amino acid residues that are responsible for this inversion of the allosteric effect, all 6 evolutionary TrpA and TrpB intermediates that stepwise link LBCA-TS with ncTS were characterized. Remarkably, the switching from TrpB inhibition to TrpB activation by TrpA occurred between 2 successive TS intermediates. Sequence comparison of these 2 intermediates and iterative rounds of site-directed mutagenesis allowed us to identify 4 of 413 residues from TrpB that are crucial for its allosteric activation by TrpA. The effect of our mutational studies was rationalized by a community analysis based on molecular dynamics simulations. Our findings demonstrate that ancestral sequence reconstruction can efficiently identify residues contributing to allosteric signal propagation in multienzyme complexes.


Assuntos
Proteínas de Bactérias/genética , Biologia Computacional , Extinção Biológica , Subunidades Proteicas/genética , Triptofano Sintase/genética , Regulação Alostérica/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Oceanospirillaceae/genética , Oceanospirillaceae/metabolismo , Filogenia , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Triptofano/biossíntese , Triptofano Sintase/química , Triptofano Sintase/metabolismo
19.
Int J Syst Evol Microbiol ; 70(2): 1106-1111, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31751193

RESUMO

A novel Gram-stain-negative bacterial strain designated as MEB193T was isolated from a sediment sample collected from Lonar Lake, India. The cells were motile, non-spore-forming and rod-shaped. The strain was oxidase- and catalase-positive. It grew optimally at pH 9.0 and at 1 % (w/v) NaCl concentration at 30 °C. Based on 16S rRNA gene sequence similarity, MEB193T belongs to genus Nitrincola, with Nitrincola alkalilacustris ZV-19T (95.89 %) and Nitrincola lacisaponensis 4CAT (95.87 %) as its closest neighbours. The major fatty acid was summed feature 8 comprising C18:1ω7c/C18:1ω6c (52 %) followed by C16 : 0 (25 %). Phosphatidylglycerol (PG) and diphosphatidylglycerol (DPG) were present as the major polar lipids. The draft genome obtained in this study was 2 793 747 bp and the G+C content was 50.79 mol%. Average nucleotide identity (71.76 %) and DNA-DNA hybridization (<20 %) values between strain MEB193T and Nitrincola lacisaponensis 4CAT confirmed the novelty of this new species. Based on phenotypic including chemotaxonomic and genotypic characterization data, strain MEB193T represents a new species of the genus Nitrincola for which the name Nitrincola tapanii sp. nov. is proposed. The type strain is MEB193T (=MCC 2863T=JCM 31570 T=KCTC 52390 T).


Assuntos
Álcalis , Lagos/microbiologia , Oceanospirillaceae/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Concentração de Íons de Hidrogênio , Índia , Hibridização de Ácido Nucleico , Oceanospirillaceae/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Curr Microbiol ; 76(10): 1128-1129, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31267173

RESUMO

Although there is documented evidence in the literature that Marinobacterium georgiense González et al. 1997 and Pseudomonas iners Iizuka and Komagata 1964 (Approved Lists 1980) should be treated as heterotypic synonyms, the nomenclatural consequences have not been implemented. Based on the rules of the International Code of Nomenclature of Prokaryotes when Marinobacterium georgiense González et al. 1997 and Pseudomonas iners Iizuka and Komagata 1964 (Approved Lists 1980) are considered to belong to the genus Marinobacterium González et al. 1997, the earliest epithet (from the competing heterotypic synonyms) is to be used for the resulting taxon, i.e., the combination Marinobacterium iners (Iizuka and Komagata 1964) must be created.


Assuntos
Oceanospirillaceae/classificação , Terminologia como Assunto , Pseudomonas/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...